Categories
Feng Li News Yanfei Kang

The febama paper is published in the International Journal of Forecasting

Authors: Li Li, Yanfei Kang, Feng Li Summary: Achieving a robust and accurate forecast is a central focus in finance and econometrics. Forecast combination has been adopted as an essential enhancement tool for improving time series forecasting performance during recent decades (Bergmeir et al., 2016, Garratt et al., 2019, Kolassa, 2011), due to its ability to reduce the […]

Categories
Feng Li News

New paper “Escalator accident mechanism analysis and injury prediction approaches in heavy capacity metro rail transit stations” published in Safety Science

Authors: Zhiru Wang, Yu Pang, Mingxin Gan, Martin Skitmore, Feng Li Link: https://doi.org/10.1016/j.ssci.2022.105850 Summary: The semi-open character with high passenger flow in Metro Rail Transport Stations (MRTS) makes safety management of human-electromechanical interaction escalator systems more complex. Safety management should not consider only single failures, but also the complex interactions in the system. This study […]

Categories
Feng Li News Yanfei Kang

The darima paper is published in the International Journal of Forecasting

Authors:  Xiaoqian Wang, Yanfei Kang, Rob J Hyndman and Feng Li Providing forecasts for ultra-long time series plays a vital role in various activities, such as investment decisions, industrial production arrangements, and farm management. This paper develops a novel distributed forecasting framework to tackle challenges associated with forecasting ultra-long time series by utilizing the industry-standard MapReduce framework. The proposed model […]

Categories
Feng Li News

Paper accepted in IJF: Hierarchical forecasting with a top-down alignment of independent level forecasts

Authors: Matthias Anderer and Feng Li Abstract: Hierarchical forecasting with intermittent time series is a challenge in both research and empirical studies. Extensive research focuses on improving the accuracy of each hierarchy, especially the intermittent time series at bottom levels. Then hierarchical reconciliation could be used to improve the overall performance further. In this paper, we present […]

Categories
Feng Li News

Feng Li is interviewed by the Forecasting Impact Podcast

 In this episode, Feng Li describes the current status of forecasting science and practice in China, his research focus, and his lab KLLAB, where he and his wife Dr Yanfei Kang are focused on computing, forecasting and learning with massive machines. We also discussed in depth one of his papers entitled “Time series forecasting with […]

Categories
Feng Li News Yanfei Kang

The Diversity paper is accepted in the European Journal of Operational Research

Authors: Yanfei Kang, Wei Cao, Fotios Petropoulos & Feng Li* Abstract: Forecast combinations have been widely applied in the last few decades to improve forecasting. Estimating optimal weights that can outperform simple averages is not always an easy task. In recent years, the idea of using time series features for forecast combination has flourished. Although this idea has been proved […]

Categories
Feng Li News

The dqr paper is published in the Journal of Business & Economic Statistics

Title: A Note on Distributed Quantile Regression by Pilot Sampling and One-Step Updating Authors:  Rui Pan, Tunan Ren, Baishan Guo, Feng Li, Guodong Li, and Hansheng Wang Abstract: Quantile regression is a method of fundamental importance. How to efficiently conduct quantile regression for a large dataset on a distributed system is of great importance. We show that the […]

Categories
Feng Li News Yanfei Kang

The FFORMPP paper is accepted in the International Journal of Forecasting

The FFORMPP paper is accepted in the International Journal of Forecasting Thiyanga S. Talagala, Feng Li, Yanfei Kang (2021). FFORMPP: Feature-based forecast model performance prediction. International Journal of Forecasting. (in press) [ arXiv | R package ] This paper introduces a novel meta-learning algorithm for time series forecast model performance prediction. We model the forecast error as a function of time series features […]

Categories
Feng Li News Yanfei Kang

Meet our KLLAB members on ISF 2021

Our KLLAB members will be presenting our work at the invited session of the 41st International Symposium on Forecasting virtually. ECR – Visibility Panel Time: Mon. Jun 28, 2021 11:00 AM – 12:00 PM (UTC+8) https://whova.com/portal/webapp/iiofe_202106/Agenda/1753058 Chaired by Shari De Baets In a world ruled by the internet and social media, it is more important than ever […]

Categories
Feng Li News

Feng Li will be presenting at the ISBA 2021 meeting

Dr. Feng Li will be presenting at the 2021 world meeting of the International Society for Bayesian Analysis (ISBA) on session of C28: Bayesian Inference and Forecasting for Business Problems. Time: Friday, July 2, 6:45 am – 8:00 am Whova Link: https://whova.com/embedded/session/isbaw_202106/1572928/ Meeting Program: https://events.stat.uconn.edu/ISBA2021/programs.html The International Society for Bayesian Analysis (ISBA) was founded in 1992to promote the development and application of Bayesian analysis. By sponsoring […]